3.241 \(\int (a+a \cos (c+d x))^2 (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=113 \[ \frac{a^2 (5 B+6 C) \tan (c+d x)}{3 d}+\frac{a^2 (2 B+3 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 (4 B+3 C) \tan (c+d x) \sec (c+d x)}{6 d}+\frac{B \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d} \]

[Out]

(a^2*(2*B + 3*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (a^2*(5*B + 6*C)*Tan[c + d*x])/(3*d) + (a^2*(4*B + 3*C)*Sec[c
+ d*x]*Tan[c + d*x])/(6*d) + (B*(a^2 + a^2*Cos[c + d*x])*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.359873, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3029, 2975, 2968, 3021, 2748, 3767, 8, 3770} \[ \frac{a^2 (5 B+6 C) \tan (c+d x)}{3 d}+\frac{a^2 (2 B+3 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 (4 B+3 C) \tan (c+d x) \sec (c+d x)}{6 d}+\frac{B \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(a^2*(2*B + 3*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (a^2*(5*B + 6*C)*Tan[c + d*x])/(3*d) + (a^2*(4*B + 3*C)*Sec[c
+ d*x]*Tan[c + d*x])/(6*d) + (B*(a^2 + a^2*Cos[c + d*x])*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^2 \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx &=\int (a+a \cos (c+d x))^2 (B+C \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=\frac{B \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{3} \int (a+a \cos (c+d x)) (a (4 B+3 C)+a (B+3 C) \cos (c+d x)) \sec ^3(c+d x) \, dx\\ &=\frac{B \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{3} \int \left (a^2 (4 B+3 C)+\left (a^2 (B+3 C)+a^2 (4 B+3 C)\right ) \cos (c+d x)+a^2 (B+3 C) \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac{a^2 (4 B+3 C) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{B \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{6} \int \left (2 a^2 (5 B+6 C)+3 a^2 (2 B+3 C) \cos (c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac{a^2 (4 B+3 C) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{B \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{2} \left (a^2 (2 B+3 C)\right ) \int \sec (c+d x) \, dx+\frac{1}{3} \left (a^2 (5 B+6 C)\right ) \int \sec ^2(c+d x) \, dx\\ &=\frac{a^2 (2 B+3 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 (4 B+3 C) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{B \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac{\left (a^2 (5 B+6 C)\right ) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d}\\ &=\frac{a^2 (2 B+3 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 (5 B+6 C) \tan (c+d x)}{3 d}+\frac{a^2 (4 B+3 C) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{B \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [B]  time = 5.72684, size = 451, normalized size = 3.99 \[ \frac{a^2 (\cos (c+d x)+1)^2 \sec ^4\left (\frac{1}{2} (c+d x)\right ) \left (\frac{4 (5 B+6 C) \sin \left (\frac{d x}{2}\right )}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )}+\frac{4 (5 B+6 C) \sin \left (\frac{d x}{2}\right )}{\left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}+\frac{(7 B+3 C) \cos \left (\frac{c}{2}\right )-(5 B+3 C) \sin \left (\frac{c}{2}\right )}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^2}-\frac{(5 B+3 C) \sin \left (\frac{c}{2}\right )+(7 B+3 C) \cos \left (\frac{c}{2}\right )}{\left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2}-6 (2 B+3 C) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+6 (2 B+3 C) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+\frac{2 B \sin \left (\frac{d x}{2}\right )}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^3}+\frac{2 B \sin \left (\frac{d x}{2}\right )}{\left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3}\right )}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^2*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*(-6*(2*B + 3*C)*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 6*(2*B
 + 3*C)*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (2*B*Sin[(d*x)/2])/((Cos[c/2] - Sin[c/2])*(Cos[(c + d*x)/2]
 - Sin[(c + d*x)/2])^3) + ((7*B + 3*C)*Cos[c/2] - (5*B + 3*C)*Sin[c/2])/((Cos[c/2] - Sin[c/2])*(Cos[(c + d*x)/
2] - Sin[(c + d*x)/2])^2) + (4*(5*B + 6*C)*Sin[(d*x)/2])/((Cos[c/2] - Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d
*x)/2])) + (2*B*Sin[(d*x)/2])/((Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3) - ((7*B + 3*C)*C
os[c/2] + (5*B + 3*C)*Sin[c/2])/((Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2) + (4*(5*B + 6*
C)*Sin[(d*x)/2])/((Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))))/(48*d)

________________________________________________________________________________________

Maple [A]  time = 0.066, size = 141, normalized size = 1.3 \begin{align*}{\frac{{a}^{2}C\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{3\,{a}^{2}C\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}}+{\frac{5\,{a}^{2}B\tan \left ( dx+c \right ) }{3\,d}}+{\frac{{a}^{2}B \left ( \sec \left ( dx+c \right ) \right ) ^{2}\tan \left ( dx+c \right ) }{3\,d}}+2\,{\frac{{a}^{2}C\tan \left ( dx+c \right ) }{d}}+{\frac{{a}^{2}B\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{d}}+{\frac{{a}^{2}B\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x)

[Out]

1/2/d*a^2*C*sec(d*x+c)*tan(d*x+c)+3/2/d*a^2*C*ln(sec(d*x+c)+tan(d*x+c))+5/3*a^2*B*tan(d*x+c)/d+1/3*a^2*B*sec(d
*x+c)^2*tan(d*x+c)/d+2/d*a^2*C*tan(d*x+c)+a^2*B*sec(d*x+c)*tan(d*x+c)/d+1/d*a^2*B*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.27646, size = 235, normalized size = 2.08 \begin{align*} \frac{4 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a^{2} - 6 \, B a^{2}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 3 \, C a^{2}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a^{2}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, B a^{2} \tan \left (d x + c\right ) + 24 \, C a^{2} \tan \left (d x + c\right )}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*a^2 - 6*B*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x +
 c) + 1) + log(sin(d*x + c) - 1)) - 3*C*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log
(sin(d*x + c) - 1)) + 6*C*a^2*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 12*B*a^2*tan(d*x + c) + 24*C*a
^2*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.69348, size = 315, normalized size = 2.79 \begin{align*} \frac{3 \,{\left (2 \, B + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (2 \, B + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (2 \,{\left (5 \, B + 6 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \,{\left (2 \, B + C\right )} a^{2} \cos \left (d x + c\right ) + 2 \, B a^{2}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/12*(3*(2*B + 3*C)*a^2*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(2*B + 3*C)*a^2*cos(d*x + c)^3*log(-sin(d*x +
 c) + 1) + 2*(2*(5*B + 6*C)*a^2*cos(d*x + c)^2 + 3*(2*B + C)*a^2*cos(d*x + c) + 2*B*a^2)*sin(d*x + c))/(d*cos(
d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2*(B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.5839, size = 240, normalized size = 2.12 \begin{align*} \frac{3 \,{\left (2 \, B a^{2} + 3 \, C a^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \,{\left (2 \, B a^{2} + 3 \, C a^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (6 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 9 \, C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 16 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 24 \, C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 18 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 15 \, C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/6*(3*(2*B*a^2 + 3*C*a^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(2*B*a^2 + 3*C*a^2)*log(abs(tan(1/2*d*x + 1/
2*c) - 1)) - 2*(6*B*a^2*tan(1/2*d*x + 1/2*c)^5 + 9*C*a^2*tan(1/2*d*x + 1/2*c)^5 - 16*B*a^2*tan(1/2*d*x + 1/2*c
)^3 - 24*C*a^2*tan(1/2*d*x + 1/2*c)^3 + 18*B*a^2*tan(1/2*d*x + 1/2*c) + 15*C*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/
2*d*x + 1/2*c)^2 - 1)^3)/d